1. day05【Set,Collections,排序,查找,Map】

1.1. 今日内容

  • Set集合

  • Collections工具类

  • 冒泡排序

  • 选择排序

  • 二分查找

  • Map集合

1.2. 教学目标

  • [ ] 能够说出Set集合的特点
  • [ ] 能够说出Set集合常用子类及其底层结构特点
  • [ ] 能够使用HashSet集合存储自定义元素
  • [ ] 能够使用集合工具类Collections的shuffle、sort、addAll方法
  • [ ] 能够理解冒泡及选择排序的执行流程
  • [ ] 能够理解二分查找的执行流程
  • [ ] 能够说出Map集合特点
  • [ ] 能够说出Map接口常用子类及其底层结构特点
  • [ ] 能够使用”键找值”和“键值对”的方式遍历Map集合
  • [ ] 能够知道自定义类型当做HashMap的键存储的注意事项

2. 第一章 Set接口

java.util.Set接口和java.util.List接口一样,同样继承自Collection接口,它与Collection接口中的方法基本一致,并没有对Collection接口进行功能上的扩充,只是比Collection接口更加严格了。与List接口不同的是,Set接口都会以某种规则保证存入的元素不出现重复。

Set集合有多个子类,这里我们介绍其中的java.util.HashSetjava.util.LinkedHashSetjava.util.TreeSet这两个集合。

tips:Set集合取出元素的方式可以采用:迭代器、增强for。

2.1. 1 HashSet集合介绍

java.util.HashSetSet接口的一个实现类,它所存储的元素是不可重复的,并且元素都是无序的(即存取顺序不能保证不一致)。java.util.HashSet底层的实现其实是一个java.util.HashMap支持,由于我们暂时还未学习,先做了解。

HashSet是根据对象的哈希值来确定元素在集合中的存储位置,因此具有良好的存储和查找性能。保证元素唯一性的方式依赖于:hashCodeequals方法。

我们先来使用一下Set集合存储,看下现象,再进行原理的讲解:

public class HashSetDemo {
    public static void main(String[] args) {
        //创建 Set集合
        HashSet<String>  set = new HashSet<String>();

        //添加元素
        set.add(new String("cba"));
        set.add("abc");
        set.add("bac"); 
        set.add("cba");  
        //遍历
        for (String name : set) {
            System.out.println(name);
        }
    }
}

输出结果如下,说明集合中不能存储重复元素:

cba
abc
bac

tips:根据结果我们发现字符串"cba"只存储了一个,也就是说重复的元素set集合不存储。

2.2. 2 HashSet集合存储数据的结构(哈希表)

什么是哈希表呢?

JDK1.8之前,哈希表底层采用数组+链表实现,即使用数组处理冲突,同一hash值的链表都存储在一个数组里。但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值依次查找的效率较低。而JDK1.8中,哈希表存储采用数组+链表+红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树,这样大大减少了查找时间。

简单的来说,哈希表是由数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的,如下图所示。

看到这张图就有人要问了,这个是怎么存储的呢?

为了方便大家的理解我们结合一个存储流程图来说明一下:

总而言之,JDK1.8引入红黑树大程度优化了HashMap的性能,那么对于我们来讲保证HashSet集合元素的唯一,其实就是根据对象的hashCode和equals方法来决定的。如果我们往集合中存放自定义的对象,那么保证其唯一,就必须复写hashCode和equals方法建立属于当前对象的比较方式。

2.3. 3 HashSet存储自定义类型元素

给HashSet中存放自定义类型元素时,需要重写对象中的hashCode和equals方法,建立自己的比较方式,才能保证HashSet集合中的对象唯一.

创建自定义Student类:

public class Student {
    private String name;
    private int age;

    //get/set
    @Override
    public boolean equals(Object o) {
        if (this == o)
            return true;
        if (o == null || getClass() != o.getClass())
            return false;
        Student student = (Student) o;
        return age == student.age &&
               Objects.equals(name, student.name);
    }

    @Override
    public int hashCode() {
        return Objects.hash(name, age);
    }
}

创建测试类:

public class HashSetDemo2 {
    public static void main(String[] args) {
        //创建集合对象   该集合中存储 Student类型对象
        HashSet<Student> stuSet = new HashSet<Student>();
        //存储 
        Student stu = new Student("于谦", 43);
        stuSet.add(stu);
        stuSet.add(new Student("郭德纲", 44));
        stuSet.add(new Student("于谦", 43));
        stuSet.add(new Student("郭麒麟", 23));
        stuSet.add(stu);

        for (Student stu2 : stuSet) {
            System.out.println(stu2);
        }
    }
}
执行结果:
Student [name=郭德纲, age=44]
Student [name=于谦, age=43]
Student [name=郭麒麟, age=23]

2.4. 4 HashSet的源码分析

2.4.1. 4.1 HashSet的成员属性及构造方法

public class HashSet<E> extends AbstractSet<E>
                        implements Set<E>, Cloneable, java.io.Serializable{

    //内部一个HashMap——HashSet内部实际上是用HashMap实现的
    private transient HashMap<E,Object> map;
    // 用于做map的值
    private static final Object PRESENT = new Object();
    /**
     * 构造一个新的HashSet,
     * 内部实际上是构造了一个HashMap
     */
    public HashSet() {
        map = new HashMap<>();
    }

}
  • 通过构造方法可以看出,HashSet构造时,实际上是构造一个HashMap

2.4.2. 4.2 HashSet的add方法源码解析

public class HashSet{
    //......
    public boolean add(E e) {
       return map.put(e, PRESENT)==null;//内部实际上添加到map中,键:要添加的对象,值:Object对象
    }
    //......
}

2.4.3. 4.3 HashMap的put方法源码解析

public class HashMap{
    //......
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    //......
    static final int hash(Object key) {//根据参数,产生一个哈希值
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
    //......
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; //临时变量,存储"哈希表"——由此可见,哈希表是一个Node[]数组
        Node<K,V> p;//临时变量,用于存储从"哈希表"中获取的Node
        int n, i;//n存储哈希表长度;i存储哈希表索引

        if ((tab = table) == null || (n = tab.length) == 0)//判断当前是否还没有生成哈希表
            n = (tab = resize()).length;//resize()方法用于生成一个哈希表,默认长度:16,赋给n
        if ((p = tab[i = (n - 1) & hash]) == null)//(n-1)&hash等效于hash % n,转换为数组索引
            tab[i] = newNode(hash, key, value, null);//此位置没有元素,直接存储
        else {//否则此位置已经有元素了
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))//判断哈希值和equals
                e = p;//将哈希表中的元素存储为e
            else if (p instanceof TreeNode)//判断是否为"树"结构
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {//排除以上两种情况,将其存为新的Node节点
                for (int binCount = 0; ; ++binCount) {//遍历链表
                    if ((e = p.next) == null) {//找到最后一个节点
                        p.next = newNode(hash, key, value, null);//产生一个新节点,赋值到链表
                        if (binCount >= TREEIFY_THRESHOLD - 1) //判断链表长度是否大于了8
                            treeifyBin(tab, hash);//树形化
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))//跟当前变量的元素比较,如果hashCode相同,equals也相同
                        break;//结束循环
                    p = e;//将p设为当前遍历的Node节点
                }
            }
            if (e != null) { // 如果存在此键
                V oldValue = e.value;//取出value
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;//设置为新value
                afterNodeAccess(e);//空方法,什么都不做
                return oldValue;//返回旧值
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }
}

2.5. 5 LinkedHashSet

我们知道HashSet保证元素唯一,可是元素存放进去是没有顺序的,那么我们要保证有序,怎么办呢?

在HashSet下面有一个子类java.util.LinkedHashSet,它是链表和哈希表组合的一个数据存储结构。

演示代码如下:

public class LinkedHashSetDemo {
    public static void main(String[] args) {
        Set<String> set = new LinkedHashSet<String>();
        set.add("bbb");
        set.add("aaa");
        set.add("abc");
        set.add("bbc");
        Iterator<String> it = set.iterator();
        while (it.hasNext()) {
            System.out.println(it.next());
        }
    }
}
结果:
  bbb
  aaa
  abc
  bbc

2.6. 6 TreeSet集合

2.6.1. 6.1 特点

TreeSet集合是Set接口的一个实现类,底层依赖于TreeMap,是一种基于红黑树的实现,其特点为:

  1. 元素唯一
  2. 元素没有索引
  3. 使用元素的自然顺序对元素进行排序,或者根据创建 TreeSet 时提供的 Comparator 比较器 进行排序,具体取决于使用的构造方法:
public TreeSet():                                根据其元素的自然排序进行排序
public TreeSet(Comparator<E> comparator):    根据指定的比较器进行排序

2.6.2. 6.2 演示

案例演示自然排序(20,18,23,22,17,24,19):

public static void main(String[] args) {
    //无参构造,默认使用元素的自然顺序进行排序
    TreeSet<Integer> set = new TreeSet<Integer>();
    set.add(20);
    set.add(18);
      set.add(23);
      set.add(22);
      set.add(17);
      set.add(24);
      set.add(19);
      System.out.println(set);
}

控制台的输出结果为:
[17, 18, 19, 20, 22, 23, 24]

案例演示比较器排序(20,18,23,22,17,24,19):

public static void main(String[] args) {
      //有参构造,传入比较器,使用比较器对元素进行排序
      TreeSet<Integer> set = new TreeSet<Integer>(new Comparator<Integer>() {
        @Override
        public int compare(Integer o1, Integer o2) {
              //元素前 - 元素后 : 升序
              //元素后 - 元素前 : 降序
              return o2 - o1;
        }
      });
      set.add(20);
      set.add(18);
      set.add(23);
      set.add(22);
      set.add(17);
      set.add(24);
      set.add(19);
      System.out.println(set);
}

控制台的输出结果为:
[24, 23, 22, 20, 19, 18, 17]

3. 第二章 Collections类

3.1. 1 Collections常用功能

  • java.utils.Collections是集合工具类,用来对集合进行操作。

    常用方法如下:

  • public static void shuffle(List<?> list):打乱集合顺序。
  • public static <T> void sort(List<T> list):将集合中元素按照默认规则排序。
  • public static <T> void sort(List<T> list,Comparator<? super T> ):将集合中元素按照指定规则排序。

代码演示:

public class CollectionsDemo {
    public static void main(String[] args) {
        ArrayList<Integer> list = new ArrayList<Integer>();

        list.add(100);
        list.add(300);
        list.add(200);
        list.add(50);
        //排序方法 
        Collections.sort(list);
        System.out.println(list);
    }
}
结果:
[50,100, 200, 300]

我们的集合按照默认的自然顺序进行了排列,如果想要指定顺序那该怎么办呢?

3.2. 2 Comparator比较器

创建一个学生类,存储到ArrayList集合中完成指定排序操作。

Student 类

public class Student{
    private String name;
    private int age;
    //构造方法
    //get/set
     //toString
}

测试类:

public class Demo {
    public static void main(String[] args) {
        // 创建四个学生对象 存储到集合中
        ArrayList<Student> list = new ArrayList<Student>();

        list.add(new Student("rose",18));
        list.add(new Student("jack",16));
        list.add(new Student("abc",20));
        Collections.sort(list, new Comparator<Student>() {
            @Override
            public int compare(Student o1, Student o2) {
            return o1.getAge()-o2.getAge();//以学生的年龄升序
            }
        });


        for (Student student : list) {
            System.out.println(student);
        }
    }
}
Student{name='jack', age=16}
Student{name='rose', age=18}
Student{name='abc', age=20}

3.3. 3 可变参数

JDK1.5之后,如果我们定义一个方法需要接受多个参数,并且多个参数类型一致,我们可以对其简化.

格式:

修饰符 返回值类型 方法名(参数类型... 形参名){  }

代码演示:

  public class ChangeArgs {
    public static void main(String[] args) {
        int sum = getSum(6, 7, 2, 12, 2121);
        System.out.println(sum);
    }
    public static int getSum(int... arr) {
           int sum = 0;
            for (int a : arr) {
         sum += a;
        }
            return sum;
    }
}

注意:

​ 1.一个方法只能有一个可变参数

​ 2.如果方法中有多个参数,可变参数要放到最后。

应用场景: Collections

​ 在Collections中也提供了添加一些元素方法:

public static <T> boolean addAll(Collection<T> c, T... elements):往集合中添加一些元素。

代码演示:

public class CollectionsDemo {
    public static void main(String[] args) {
      ArrayList<Integer> list = new ArrayList<Integer>();
      //原来写法
      //list.add(12);
      //list.add(14);
      //list.add(15);
      //list.add(1000);
      //采用工具类 完成 往集合中添加元素  
      Collections.addAll(list, 5, 222, 12);
      System.out.println(list);
}

4. 第三章 冒泡排序

4.1. 2.1 冒泡排序概述

  • 一种排序的方式,对要进行排序的数据中相邻的数据进行两两比较,将较大的数据放在后面,依次对所有的数据进行操作,直至所有数据按要求完成排序
  • 如果有n个数据进行排序,总共需要比较n-1次
  • 每一次比较完毕,下一次的比较就会少一个数据参与

4.2. 2.2 冒泡排序图解

image-20200728133809363

4.3. 4.3 冒泡排序代码实现

/*
    冒泡排序:
        一种排序的方式,对要进行排序的数据中相邻的数据进行两两比较,将较大的数据放在后面,
        依次对所有的数据进行操作,直至所有数据按要求完成排序
 */
public class ArrayDemo {
    public static void main(String[] args) {
        //定义一个数组
        int[] arr = {7, 6, 5, 4, 3};
        System.out.println("排序前:" + Arrays.toString(arr));

        // 这里减1,是控制每轮比较的次数
        for (int x = 0; x < arr.length - 1; x++) {
            // -1是为了避免索引越界,-x是为了调高比较效率
            for (int i = 0; i < arr.length - 1 - x; i++) {
                if (arr[i] > arr[i + 1]) {
                    int temp = arr[i];
                    arr[i] = arr[i + 1];
                    arr[i + 1] = temp;
                }
            }
        }
        System.out.println("排序后:" + Arrays.toString(arr));
    }
}

5. 第三章 选择排序

5.1. 3.1 选择排序概述

  • 另外一种排序的方式,选中数组的某个元素,其后面的元素依次和选中的元素进行两两比较,将较大的数据放在后面,依次从前到后选中每个元素,直至所有数据按要求完成排序
  • 如果有n个数据进行排序,总共需要比较n-1次
  • 每一次比较完毕,下一次的比较就会少一个数据参与

5.2. 3.2 选择排序图解

5

5.3. 3.3 选择排序代码实现

/*
    选择排序:
        另外一种排序的方式,选中数组的某个元素,其后面的元素依次和选中的元素进行两两比较,将较大的数据放在后面,依次从前到后选中每个元素,直至所有数据按要求完成排序
 */
public class ArrayDemo {
    public static void main(String[] args) {
        //定义一个数组
        int[] arr = {7, 6, 5, 4, 3};
        System.out.println("排序前:" + Arrays.toString(arr));
          // 这里减1,是控制比较的轮数
        for (int x = 0; x < arr.length - 1; x++) {
            // 从x+1开始,直到最后一个元素
            for (int i = x+1; i < arr.length; i++) {
                if (arr[x] > arr[i]) {
                    int temp = arr[x];
                    arr[x] = arr[i];
                    arr[i] = temp;
                }
            }
        }
        System.out.println("排序后:" + Arrays.toString(arr));
    }
}

6. 第四章 二分查找

6.1. 4.1 普通查找和二分查找

普通查找

原理:遍历数组,获取每一个元素,然后判断当前遍历的元素是否和要查找的元素相同,如果相同就返回该元素的索引。如果没有找到,就返回一个负数作为标识(一般是-1)

二分查找

原理: 每一次都去获取数组的中间索引所对应的元素,然后和要查找的元素进行比对,如果相同就返回索引;

如果不相同,就比较中间元素和要查找的元素的值;

如果中间元素的值大于要查找的元素,说明要查找的元素在左侧,那么就从左侧按照上述思想继续查询(忽略右侧数据);

如果中间元素的值小于要查找的元素,说明要查找的元素在右侧,那么就从右侧按照上述思想继续查询(忽略左侧数据);

二分查找对数组是有要求的,数组必须已经排好序

6.2. 4.2 二分查找图解

假设有一个给定有序数组(10,14,21,38,45,47,53,81,87,99),要查找50出现的索引

则查询过程如下图所示:

5

6.3. 4.3 二分查找代码实现

    public static void main(String[] args) {
        int[] arr = {10, 14, 21, 38, 45, 47, 53, 81, 87, 99};
        int index = binarySerach(arr, 38);
        System.out.println(index);
    }
    /**
     * 二分查找方法
     * @param arr 查找的目标数组
     * @param number 查找的目标值
     * @return 找到的索引,如果没有找到返回-1
     */
    public static int binarySerach(int[] arr, int number) {
        int start = 0;
        int end = arr.length - 1;

        while (start <= end) {
            int mid = (start + end) / 2;
            if (number == arr[mid]) {
                return mid ;
            } else if (number < arr[mid]) {
                end = mid - 1;
            } else if (number > arr[mid]) {
                start = mid + 1;
            }
        }
        return -1;  //如果数组中有这个元素,则返回
    }

7. 第五章 Map集合

7.1. 5.1 概述

现实生活中,我们常会看到这样的一种集合:IP地址与主机名,身份证号与个人,系统用户名与系统用户对象等,这种一一对应的关系,就叫做映射。Java提供了专门的集合类用来存放这种对象关系的对象,即java.util.Map接口。

我们通过查看Map接口描述,发现Map接口下的集合与Collection接口下的集合,它们存储数据的形式不同,如下图。

  • Collection中的集合,元素是孤立存在的(理解为单身),向集合中存储元素采用一个个元素的方式存储。
  • Map中的集合,元素是成对存在的(理解为夫妻)。每个元素由键与值两部分组成,通过键可以找对所对应的值。
  • Collection中的集合称为单列集合,Map中的集合称为双列集合。
  • 需要注意的是,Map中的集合不能包含重复的键,值可以重复;每个键只能对应一个值。

7.2. 5.2 Map的常用子类

通过查看Map接口描述,看到Map有多个子类,这里我们主要讲解常用的HashMap集合、LinkedHashMap集合。

  • HashMap:存储数据采用的哈希表结构,元素的存取顺序不能保证一致。由于要保证键的唯一、不重复,需要重写键的hashCode()方法、equals()方法。
  • LinkedHashMap:HashMap下有个子类LinkedHashMap,存储数据采用的哈希表结构+链表结构。通过链表结构可以保证元素的存取顺序一致;通过哈希表结构可以保证的键的唯一、不重复,需要重写键的hashCode()方法、equals()方法。
  • TreeMap:TreeMap集合和Map相比没有特有的功能,底层的数据结构是红黑树;可以对元素的进行排序,排序方式有两种:自然排序比较器排序

tips:Map接口中的集合都有两个泛型变量,在使用时,要为两个泛型变量赋予数据类型。两个泛型变量的数据类型可以相同,也可以不同。

7.3. 5.3 Map的常用方法

Map接口中定义了很多方法,常用的如下:

  • public V put(K key, V value): 把指定的键与指定的值添加到Map集合中。
  • public V remove(Object key): 把指定的键 所对应的键值对元素 在Map集合中删除,返回被删除元素的值。
  • public V get(Object key) 根据指定的键,在Map集合中获取对应的值。
  • public Set<K> keySet(): 获取Map集合中所有的键,存储到Set集合中。
  • public Set<Map.Entry<K,V>> entrySet(): 获取到Map集合中所有的键值对对象的集合(Set集合)。
  • public boolean containKey(Object key):判断该集合中是否有此键。

Map接口的方法演示

public class MapDemo {
    public static void main(String[] args) {
        //创建 map对象
        HashMap<String, String>  map = new HashMap<String, String>();

        //添加元素到集合
        map.put("黄晓明", "杨颖");
        map.put("文章", "马伊琍");
        map.put("邓超", "孙俪");
        System.out.println(map);

        //String remove(String key)
        System.out.println(map.remove("邓超"));
        System.out.println(map);

        // 想要查看 黄晓明的媳妇 是谁
        System.out.println(map.get("黄晓明"));
        System.out.println(map.get("邓超"));    
    }
}

tips:

使用put方法时,若指定的键(key)在集合中没有,则没有这个键对应的值,返回null,并把指定的键值添加到集合中;

若指定的键(key)在集合中存在,则返回值为集合中键对应的值(该值为替换前的值),并把指定键所对应的值,替换成指定的新值。

7.4. 5.4 Map的遍历

7.4.1. 方式1:键找值方式

通过元素中的键,获取键所对应的值

分析步骤:

  1. 获取Map中所有的键,由于键是唯一的,所以返回一个Set集合存储所有的键。方法提示:keyset()
  2. 遍历键的Set集合,得到每一个键。
  3. 根据键,获取键所对应的值。方法提示:get(K key)

遍历图解:

7.4.2. 方式2:键值对方式

即通过集合中每个键值对(Entry)对象,获取键值对(Entry)对象中的键与值。

Entry键值对对象:

我们已经知道,Map中存放的是两种对象,一种称为key(键),一种称为value(值),它们在在Map中是一一对应关系,这一对对象又称做Map中的一个Entry(项)Entry将键值对的对应关系封装成了对象。即键值对对象,这样我们在遍历Map集合时,就可以从每一个键值对(Entry)对象中获取对应的键与对应的值。

在Map集合中也提供了获取所有Entry对象的方法:

  • public Set<Map.Entry<K,V>> entrySet(): 获取到Map集合中所有的键值对对象的集合(Set集合)。

    获取了Entry对象 , 表示获取了一对键和值,那么同样Entry中 , 分别提供了获取键和获取值的方法:

  • public K getKey():获取Entry对象中的键。

  • public V getValue():获取Entry对象中的值。

操作步骤与图解:

  1. 获取Map集合中,所有的键值对(Entry)对象,以Set集合形式返回。方法提示:entrySet()
  2. 遍历包含键值对(Entry)对象的Set集合,得到每一个键值对(Entry)对象。
  3. 通过键值对(Entry)对象,获取Entry对象中的键与值。 方法提示:getkey() getValue()

遍历图解:

tips:Map集合不能直接使用迭代器或者foreach进行遍历。但是转成Set之后就可以使用了。

7.5. 5.5 HashMap存储自定义类型

练习:每位学生(姓名,年龄)都有自己的家庭住址。那么,既然有对应关系,则将学生对象和家庭住址存储到map集合中。学生作为键, 家庭住址作为值。

注意,学生姓名相同并且年龄相同视为同一名学生。

编写学生类:

public class Student {
    private String name;
    private int age;

    //构造方法
    //get/set
    @Override
    public boolean equals(Object o) {
        if (this == o)
            return true;
        if (o == null || getClass() != o.getClass())
            return false;
        Student student = (Student) o;
        return age == student.age && Objects.equals(name, student.name);
    }

    @Override
    public int hashCode() {
        return Objects.hash(name, age);
    }
}

编写测试类:

public class HashMapTest {
    public static void main(String[] args) {
        //1,创建Hashmap集合对象。
        Map<Student,String> map = new HashMap<Student,String>();
        //2,添加元素。
        map.put(new Student("lisi",28), "上海");
        map.put(new Student("wangwu",22), "北京");
        map.put(new Student("wangwu",22), "南京");

        //3,取出元素。键找值方式
        Set<Student> keySet = map.keySet();
        for(Student key: keySet){
            String value = map.get(key);
            System.out.println(key.toString()+"....."+value);
        }
    }
}
  • 当给HashMap中存放自定义对象时,如果自定义对象作为key存在,这时要保证对象唯一,必须复写对象的hashCode和equals方法(如果忘记,请回顾HashSet存放自定义对象)。
  • 如果要保证map中存放的key和取出的顺序一致,可以使用java.util.LinkedHashMap集合来存放。

7.6. 5.6 LinkedHashMap介绍

我们知道HashMap保证成对元素唯一,并且查询速度很快,可是成对元素存放进去是没有顺序的,那么我们要保证有序,还要速度快怎么办呢?

在HashMap下面有一个子类LinkedHashMap,它是链表和哈希表组合的一个数据存储结构。

public class LinkedHashMapDemo {
    public static void main(String[] args) {
        LinkedHashMap<String, String> map = new LinkedHashMap<String, String>();
        map.put("邓超", "孙俪");
        map.put("李晨", "范冰冰");
        map.put("刘德华", "朱丽倩");
        Set<Entry<String, String>> entrySet = map.entrySet();
        for (Entry<String, String> entry : entrySet) {
            System.out.println(entry.getKey() + "  " + entry.getValue());
        }
    }
}

结果:

邓超  孙俪
李晨  范冰冰
刘德华  朱丽倩

7.7. 5.7 TreeMap集合

7.7.1. 5.7.1.TreeMap介绍

TreeMap集合和Map相比没有特有的功能,底层的数据结构是红黑树;可以对元素的进行排序,排序方式有两种:自然排序比较器排序;到时使用的是哪种排序,取决于我们在创建对象的时候所使用的构造方法;

public TreeMap()                                    使用自然排序
public TreeMap(Comparator<? super K> comparator)     比较器排

7.7.2. 5.7.2.演示

案例演示自然排序

public static void main(String[] args) {
     TreeMap<Integer, String> map = new TreeMap<Integer, String>();
      map.put(1,"张三");
      map.put(4,"赵六");
      map.put(3,"王五");
      map.put(6,"酒八");
      map.put(5,"老七");
      map.put(2,"李四");
      System.out.println(map);
}

控制台的输出结果为:
{1=张三, 2=李四, 3=王五, 4=赵六, 5=老七, 6=酒八}

案例演示比较器排序

需求:

  1. 创建一个TreeMap集合,键是学生对象(Student),值是居住地 (String)。存储多个元素,并遍历。
  2. 要求按照学生的年龄进行升序排序,如果年龄相同,比较姓名的首字母升序, 如果年龄和姓名都是相同,认为是同一个元素;

    实现:

为了保证age和name相同的对象是同一个,Student类必须重写hashCode和equals方法

public class Student {
    private int age;
    private String name;
    //省略get/set..
    public Student() {}
    public Student(int age, String name) {
        this.age = age;
        this.name = name;
    }
    @Override
    public String toString() {
        return "Student{" +
                "age=" + age +
                ", name='" + name + '\'' +
                '}';
    }
    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;
        Student student = (Student) o;
        return age == student.age &&
                Objects.equals(name, student.name);
    }
    @Override
    public int hashCode() {
        return Objects.hash(age, name);
    }
}
public static void main(String[] args) {
      TreeMap<Student, String> map = new TreeMap<Student, String>(new Comparator<Student>() {
        @Override
        public int compare(Student o1, Student o2) {
              //先按照年龄升序
              int result = o1.getAge() - o2.getAge();
              if (result == 0) {
                //年龄相同,则按照名字的首字母升序
                return o1.getName().charAt(0) - o2.getName().charAt(0);
              } else {
                //年龄不同,直接返回结果
                return result;
              }
        }
      });
      map.put(new Student(30, "jack"), "深圳");
      map.put(new Student(10, "rose"), "北京");
      map.put(new Student(20, "tom"), "上海");
      map.put(new Student(10, "marry"), "南京");
      map.put(new Student(30, "lucy"), "广州");
      System.out.println(map);
}
控制台的输出结果为:
{
  Student{age=10, name='marry'}=南京, 
  Student{age=10, name='rose'}=北京, 
  Student{age=20, name='tom'}=上海, 
  Student{age=30, name='jack'}=深圳, 
  Student{age=30, name='lucy'}=广州
}

7.8. 5.8 Map集合练习

需求:

输入一个字符串中每个字符出现次数。

分析:

  1. 获取一个字符串对象
  2. 创建一个Map集合,键代表字符,值代表次数。
  3. 遍历字符串得到每个字符。
  4. 判断Map中是否有该键。
  5. 如果没有,第一次出现,存储次数为1;如果有,则说明已经出现过,获取到对应的值进行++,再次存储。
  6. 打印最终结果

方法介绍

public boolean containKey(Object key):判断该集合中是否有此键。

代码:

public class MapTest {
public static void main(String[] args) {
        //友情提示
        System.out.println("请录入一个字符串:");
        String line = new Scanner(System.in).nextLine();
        // 定义 每个字符出现次数的方法
        findChar(line);
    }
    private static void findChar(String line) {
        //1:创建一个集合 存储  字符 以及其出现的次数
        HashMap<Character, Integer> map = new HashMap<Character, Integer>();
        //2:遍历字符串
        for (int i = 0; i < line.length(); i++) {
            char c = line.charAt(i);
            //判断 该字符 是否在键集中
            if (!map.containsKey(c)) {//说明这个字符没有出现过
                //那就是第一次
                map.put(c, 1);
            } else {
                //先获取之前的次数
                Integer count = map.get(c);
                //count++;
                //再次存入  更新
                map.put(c, ++count);
            }
        }
        System.out.println(map);
    }
}

results matching ""

    No results matching ""